
9/18/2019 BIBFRAME Workshop 2019 - Running the Sinopia Stack on Amazon Web Services

https://ld4p.github.io/bf-workshop-2019/sinopia-stack-aws/ 1/3

2019 BIBFRAME Workshop - Stockholm, Sweden

Running the Sinopia Stack on Amazon Web
Services

https://ld4p.github.io/bf-workshop-
2019/sinopia-stack-aws/

Background

An early requirement for the open-source Sinopia project was to
build a cloud-based collaborative editing environment. The team
choose Amazon Web Services, one of the most popular
commercial cloud provider, by utilizing a number of different
AWS services and products to host Sinopia and its dependent
technologies. Although the �rst version of Sinopia is closely tied
to speci�c AWS cloud services, we are looking at more generic
infrastructure options for hosting Sinopia on other commercial
cloud services as well as in hybrid environments.

Amazon Web Services

Cognito
To handle authentication and

authorization for create, update, and delete operations on the
Linked Data RDF and JSON resource templates in Sinopia, we

Trellis - Linked Data Platform

In Sinopia's early analysis, we
determined that having a RDF
triplestore was not necessary for
meeting the requirements of a
create-update-read-delete (CRUD)
editor for RDF. Looking at the
available options, we realized the
linked-data platform Trellis was a
good match to our requirements.

An open-source project started by Aaron Coburn, Trellis offers
multiple storage backends, including a relational database, that
stores entity or named graphs. Trellis also provides a message
queue that we could leverage for indexing these named graphs
into an AWS Elasticsearch.

https://ld4p.github.io/bf-workshop-2019
https://ld4p.github.io/bf-workshop-2019/sinopia-stack-aws/
https://sinopia.io/
https://aws.amazon.com/
https://www.w3.org/TR/ldp/
https://www.trellisldp.org/
https://www.trellisldp.org/


9/18/2019 BIBFRAME Workshop 2019 - Running the Sinopia Stack on Amazon Web Services

https://ld4p.github.io/bf-workshop-2019/sinopia-stack-aws/ 2/3

are using the AWS Cognito secure user sign-up and access
control service.

After a user successfully signs-up via the Amplify SDK, a JSON
Web Token is generated that allows authorized access to the
Sinopia Linked Data Editor React components. The JWT is also
used for write and edit HTTP actions for both JSON and RDF
payloads that are managed in Trellis, Sinopia's Linked Data
Platform.

Top

Amazon Web Services

Elastic Container Service
The deployment of Sinopia on AWS relies on pre-built Docker
images hosted on DockerHub that are then run in a Elastic
Container Service (ECS) cluster. Sinopia is run on three ECS
clusters; development, staging, and production with
corresponding Docker images for each environment. 

.

Top

Amazon Web Services

Fargate
Fargate is an AWS service that runs
Docker containers in a state-less fashion within a Virtual Elastic
cluster. A Docker container is a lightweight isolated Linux
executable package of software that is generated in a
deterministic way from a Docker image.

In Sinopia, we run the following Docker Images as Fargate tasks:

Sinopia Linked Data Editor Docker image
Sinopia Pro�le Editor Docker image
Sinopia Indexing Pipeline Docker image
Sinopia ACL Docker image

Top

Amazon Web Services

Elasticsearch Service
For the initial 1.0 release, a simple search
index was created that indexes a small
subset of the RDF created in editor through the AWS hosted
Elasticsearch Service. Elasticsearch is a full-text search engine,
based on Lucene, that has been optimized for running on
Amazon's cloud.

Amazon Web Services

Apache ActiveMQ
Trellis publishes events like creating,

updating, or deleting resource as they occur to a AWS
Messenging Queue that is monitored by a Docker container
process sinopia-indexing pipeline that then updates the
Elasticsearch search index.

Apache ActiveMQ is Java-based open-source message broker
that connects multiple servers and clients. For Sinopia, Trellis
publishes messages
for create, update, or delete actions for RDF to the queue and our
indexing pipeline Docker container responds to these messages
by updating our Elasticsearch index based on the action in
Trellis.

Top

Amazon Web Services

Relational
Database Service
(RDS)

Sinopia server's core technology is a variant of Trellis Linked
Data Platform that uses a PostgreSQL relational database to
manage the Sinopia Editor's RDF and JSON payloads instead of
a RDF Triplestore.

The AWS RDS services offers the following advantages:

Signi�cantly cheaper than AWS Triplestore Neptune
Automatic backups
Reduced administrative overhead

Top

https://aws.amazon.com/cognito/
https://aws-amplify.github.io/
https://jwt.io/
https://reactjs.org/
https://hub.docker.com/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://docker.io/
https://docker.io/
https://docker.io/
https://aws.amazon.com/fargate/
https://hub.docker.com/r/ld4p/sinopia_editor
https://hub.docker.com/r/ld4p/sinopia_profile_editor/
https://hub.docker.com/r/ld4p/sinopia_indexing_pipeline
https://hub.docker.com/r/ld4p/sinopia_acl
https://aws.amazon.com/elasticsearch-service/
https://lucene.apache.org/
https://aws.amazon.com/amazon-mq/
https://aws.amazon.com/elasticsearch-service/
https://activemq.apache.org/
https://docker.io/
https://aws.amazon.com/elasticsearch-service/
https://www.trellisldp.org/
https://www.trellisldp.org/
https://www.postgresql.org/
https://aws.amazon.com/neptune/


9/18/2019 BIBFRAME Workshop 2019 - Running the Sinopia Stack on Amazon Web Services

https://ld4p.github.io/bf-workshop-2019/sinopia-stack-aws/ 3/3

Amazon EC2

The other method we use to run a Docker
image is by hosting as part of a virtual
machine running as a EC2 Docker
container. When we started Sinopia,
Fargate does not persist data so we could
not mount a permanent disk volume to
store the RDF entities Memento metadata

as needed by our Linked Data Platform, Trellis.

Top

Infrastructure Future(s)
Although Sinopia's infrastructure is container-based, built using
Docker, much of the implementation choices were done in the
most expedient manner by trying to use Amazon Web Services in
as many places in the infrastructure as possible. We recognize
the danger of being too tightly coupled with a particular cloud
provider and in a future work-cycle (we're always open to code
Pull Requests!) we may look at using a more open, cloud-neutral
tool chains and approaches.

Using Trellis Triplestore

During Sinopia's initial requirements gathering for the core
functionality required for a minimal viable product, a RDF
Triplestore was not necessary for managing the RDF being
generated from the editor. Future requirements may require a
Sinopia RDF triplestore, especially looking at supporting
something like SHACL. Fortunately, Trellis supports both a
Triplestore and relational database backends.

Docker Swarm and/or Kubernetes

Using Amazon Web Service Fargate for the initially MVP was
acceptable for running speci�cally on Amazon's platform. For the
long-term, Sinopia should be able to run in any Docker-based
infrastructure like Docker Swarm, or more likely, run under a
Kubernetes cluster for container orchestration and management.

Questions?

Thank-you!

©2019 Jeremy Nelson under the CC4 license. Github source.

https://docker.io/
https://aws.amazon.com/ec2/
https://aws.amazon.com/fargate/
https://tools.ietf.org/html/rfc7089
https://www.trellisldp.org/
https://sinopia.io/
https://docker.io/
https://www.w3.org/TR/shacl/
https://docker.io/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://ld4p.github.io/bf-workshop-2019/sinopia-stack-aws/target=%22_new%22
http://creativecommons.org/licenses/by/4.0/
https://github.com/LD4P/bf-workshop-2019

