
9/18/2019 BIBFRAME Workshop 2019 Presentations

https://ld4p.github.io/bf-workshop-2019/lde-edit-rdf/ 1/4

2019 BIBFRAME Workshop - Stockholm, Sweden

Sidestepping the graph - Sinopia Linked Data
Editor's approach for editing RDF

https://ld4p.github.io/bf-workshop-2019/lde-
edit-rdf/

Background

The Sinopia's public facing linked data editor, available at
https://sinopia.io/, constructs forms for creating and editing RDF
based on resource templates' properties de�ned in the Library of
Congress derived Pro�les. Using JSON Schema validation that is
versioned and available at
https://github.com/LD4P/sinopia/tree/master/schemas.

The editor's use of a more modern Javascript React user
interface library coupled with the Redux library for application-
state management allows for the dynamic creation of valid RDF
triples that are then saved through an API call to the Linked Data
Platform Trellis. This approach simpli�ed the implementation of
the editor by eliminating the need for complex SPARQL
statements for querying and updating a RDF triplestore.

Pro�les and Resource Templates
Sinopia generates HTML forms for creating and editing linked
data that extends the Library of Congress Pro�les used in the
BIBFRAME Editor and Pro�le Editor projects. Pro�les, as
implemented in the BIBFRAME Editor, are JSON �les that contain
one or more resource templates.

Pro�les also contain metadata that is not persisted within the
Trellis but is still validated using JSON Schema when a Pro�le is
uploaded in Sinopia's linked data editor. De�ning and testing
these Pro�les across the different Sinopia cohort institutions
and organizations is a community-lead collaborative effort with
the cohorts requirements and suggestions driving the
development priorities of the Sinopia Development team.

Here is a snippet of a Pro�le with metadata like id, title,
description, and a Sinopia speci�c schema �eld:

{
 "Profile": {
 "resourceTemplates": [
 .
 .
 .
],
 "id": "ld4p:profile:bf2:Item",
 "title": "LD4P BIBFRAME 2.0 Item",
 "description": "Item for all formats (testing), based on LC profile as of Aug-07-2019",
 "date": "2019-08-19",
 "author": "LD4P",
 "schema": "https://ld4p.github.io/sinopia/schemas/0.2.0/profile.json"
}

Resource Templates

Each Pro�le contains one or more resource templates with the
resource template including an identi�er, information on who

React

An open-source project sponsored by Facebook, React is a very
popular Javascript module for building user interfaces. Early on,
Sinopia adopted React as a way to dynamically generate the
HTML elements for creating and editing linked data.

Components

Most of the React components in Sinopia are pure functions that
either generate HTML elements, css classes, and behavior or
provide a collection-level container for other React components.
For example the InputValue component, pictured below is an
example of a literal component that is mandatory, not
repeatable, and has a default value:

The source code for this component is available at
https://github.com/LD4P/sinopia_editor/blob/master/src/components/

In this code snippet from that Javascript module, the InputValue
component is de�ned as a const type variable with an important
data structure props that are properties of the component. The
next two lines set two constants, isLiteral and label that are
themselves one-line functions that return conditional values
when the component is rendered in the client web browser.
Similarly, the const handleEditClick wraps two function calls
that change the language and remove an item.

const InputValue = (props) => {
 const isLiteral = typeof props.item.content !== 'un
 const label = isLiteral ? props.item.content : prop

 const handleEditClick = () => {
 props.handleEdit(label, props.item.lang)
 props.removeItem(props.reduxPath)
 }

Next these functions are tied and rendered in HTML with the
return statement below:

 return (<div id="userInput">
 <div
 className="rbt-token rbt-token-removeable">
 {label}
 <button

https://ld4p.github.io/bf-workshop-2019
https://ld4p.github.io/bf-workshop-2019/lde-edit-rdf/
https://sinopia.io/
https://json-schema.org/
https://github.com/LD4P/sinopia/tree/master/schemas
https://reactjs.org/
https://redux.js.org/
https://www.trellisldp.org/
http://bibframe.org/bfe/index.html
http://bibframe.org/profile-edit/#/profile/list
https://www.trellisldp.org/
https://json-schema.org/
https://facebook.com/
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/
https://github.com/LD4P/sinopia_editor/blob/master/src/components/editor/property/InputValue.jsx

9/18/2019 BIBFRAME Workshop 2019 Presentations

https://ld4p.github.io/bf-workshop-2019/lde-edit-rdf/ 2/4

created the resource template, when it was created, a
description, a URI used to create a triple for a RDF type predicate,
the JSON schema to use for validating, and a list of property
templates.

{
 "propertyTemplates": [
 .
 .
 .
],
 "id": "ld4p:RT:bf2:Item:Use",
 "resourceLabel": "Use or Reproduction Policy",
 "resourceURI": "http://id.loc.gov/ontologies/bibframe/UsePolicy",
 "author": "LD4P",
 "date": "2019-06-11",
 "schema": "https://ld4p.github.io/sinopia/schemas/0.2.0/resource-template.json"
}

Property templates

Each resource template must have at least one property
template. A property template contains �elds that determine if
the property in the UI is mandatory or repeatable, with the
propertyURI �eld used to determine the predicate for one or
more triples. The property template can have default literal or
URI values as well. The property template also contains a type
property for determining what eventual [React][REACT]
component uses to construct the editor UI.

Literal Type Property

The most basic type of component is the Literal, that allows the
cataloger to add a literal value in the object position for the RDF
triple. The subject is either a URI or a blank node and is
determined by the context in which the resource template is
used.

Example Literal type property template:

 {
 "propertyTemplates": [
 {
 "mandatory": "false",
 "repeatable": "true",
 "type": "literal",
 "propertyURI": "http://id.loc.gov/ontologies/bflc/catalogerId",
 "propertyLabel": "Your cataloger ID",
 "resourceTemplates": [],
 "valueConstraint": {
 "valueTemplateRefs": [],
 "useValuesFrom": [],
 "defaults": []
 }
 }
]
 }

Lookup Type Property

Sinopia has a three different types of lookup components
depending on the source for the lookup.

Library of Congress Lookup

{
 "mandatory": "false",
 "repeatable": "true",
 "type": "lookup",
 "valueConstraint": {
 "useValuesFrom": [
 "http://id.loc.gov/vocabulary/mstatus"
],
 "valueDataType": {
 "dataTypeURI": "http://id.loc.gov/ontologies/bibframe/Status"

 onClick={() => props.removeItem(props.reduxPa
 className="close rbt-close rbt-token-remove-b
 ×
 </button>
 </div>
 <button
 id="editItem"
 onClick={handleEditClick}
 className="btn btn-sm btn-literal btn-default">
 Edit
 </button>
 { isLiteral ? (<LanguageButton reduxPath={props.r
 </div>)
}

Redux

The transformation the Pro�les with Resource Templates being
rendered with a client-side editor is accomplished with React but
we still need a way associate all of changes made by the
catalogers so that we can do such things as generation of RDF
validations, and updating the backend Sinopia Server.

To capture the current data of the application's React
components and to build a RDF representation based on the
values of the components, the Javascript Redux project was
used for managing the current state of the Sinopia editor
application running in the client web browser of the user. The
Redux state in Sinopia is a Javascript object that includes a
number of top-level properties that store different aspects of the
application. For example, loading the
resourceTemplate:bf2:Identi�ers:Barcode resource template,
creates an editor property that re�ects general state of the
application like errors, validations, what �elds have been
expanded, what modals are displayed, and a checksum for
alerting the user if data has changed but not saved back to the
Sinopia server.

 editor: {
 displayValidations: false,
 errors: [],
 rdfPreview: {
 show: false
 },
 resourceURIMessage: {
 show: false
 },
 groupChoice: {
 show: false
 },
 expanded: {
 resource: {
 'resourceTemplate:bf2:Identifiers:Barcode':
 'http://www.w3.org/1999/02/22-rdf-syntax-
 expanded: true
 }
 }
 }
 },
 resourceValidationErrors: {},
 lastSaveChecksum: '54527c024d0021784f666c279485
 }

Each of component in Sinopia has a prop reduxPath that is an
array made-up of URIs, resource template IDs, and random IDs,
that is used to locate the values of the component in within a
hierarchy representing the entire state of the application.

Continuing the example above, the barcode resource template is
loaded into a property panel with the following reduxPath:
['resource', 'resourceTemplate:bf2:Identifiers:Barcode',

https://json-schema.org/
https://reactjs.org/
https://reactjs.org/
https://redux.js.org/

9/18/2019 BIBFRAME Workshop 2019 Presentations

https://ld4p.github.io/bf-workshop-2019/lde-edit-rdf/ 3/4

 }
 },
 "propertyURI": "http://id.loc.gov/ontologies/bibframe/status",
 "propertyLabel": "Incorrect, Invalid or Canceled?"
}

Questioning Authority Lookup

Questioning Authority is a service from Cornell University and the
University of Iowa LIS program that provides an API service that
Sinopia queries and either JSON or RDF is returned payload. QA
caches all of the RDF from ShareVDE along with other sources
like Discogs and some id.loc.gov linked data service like LCSH.

{
 "propertyLabel": "Related Discogs Entity",
 "propertyURI": "http://exampleontology.com/relatedDiscogs",
 "mandatory": "true",
 "repeatable": "true",
 "type": "lookup",
 "subtype": "context",
 "resourceTemplates": [],
 "valueConstraint": {
 "valueTemplateRefs": [],
 "useValuesFrom": [
 "urn:discogs"
],
 "valueDataType": {
 "dataTypeURI": "http://id.loc.gov/ontologies/bibframe/Work"
 },
 "defaults": []
 },
 "remark": "http://id.loc.gov/authorities/names.html"
}

Resource Type Property

The last property template type is the resource type that allows
resource templates to be embedded within another resource
template.

{
 "mandatory": "false",
 "repeatable": "true",
 "type": "resource",
 "valueConstraint": {
 "valueTemplateRefs": [
 "lc:RT:bf2:Identifiers:Barcode"
]
 },
 "propertyURI": "http://id.loc.gov/ontologies/bibframe/Barcode",
 "propertyLabel": "Barcode"
}

'http://www.w3.org/1999/02/22-rdf-syntax-ns#value'] and the
data is stored in in an items object along with a language code
for literals. If the user adds a value for the
bf:enumerationAndChronology property, then an items object will
be added to the corresponding section in the Redux state.

 resource: {
 'resourceTemplate:bf2:Identifiers:Barcode': {
 'http://www.w3.org/1999/02/22-rdf-syntax-ns#v
 items: {
 LuG2ym_Td: {
 content: '12345',
 lang: 'en'
 }
 }
 },
 'http://id.loc.gov/ontologies/bibframe/enumer
 }
 }

Sinopia's Redux state also caches copies of the resource
templates that are active in the editor that is used for other
functions in the editor like validation and RDF generation and is
illustrated below:

 entities: {
 resourceTemplates: {
 'resourceTemplate:bf2:Identifiers:Barcode': {
 id: 'resourceTemplate:bf2:Identifiers:Barco
 resourceURI: 'http://id.loc.gov/ontologies/
 resourceLabel: 'Barcode',
 propertyTemplates: [
 {
 mandatory: 'true',
 repeatable: 'false',
 type: 'literal',
 resourceTemplates: [],
 valueConstraint: {
 valueTemplateRefs: [],
 useValuesFrom: [],
 valueDataType: {},
 defaults: [
 {
 defaultLiteral: '12345'
 }
]
 },
 propertyURI: 'http://www.w3.org/1999/02
 propertyLabel: 'Barcode',
 editable: 'true'
 },
 {
 mandatory: 'false',
 repeatable: 'true',
 type: 'literal',
 resourceTemplates: [],
 valueConstraint: {
 valueTemplateRefs: [],
 useValuesFrom: [],
 valueDataType: {}
 },
 propertyURI: 'http://id.loc.gov/ontolog
 propertyLabel: 'Enumeration and chronol
 editable: 'true'
 }
]
 }
 }
 .
 .
 .
}

Finally, we use the Redux state to store user credentials and
session information using the AWS Cognito service and built
with the Amazon Amplify SDK (software development kit).

https://lookup.ld4l.org/
http://id.loc.gov/
https://redux.js.org/
https://aws.amazon.com/amplify/

9/18/2019 BIBFRAME Workshop 2019 Presentations

https://ld4p.github.io/bf-workshop-2019/lde-edit-rdf/ 4/4

State to RDF (and back again)
Redux to RDF

Using the editor's application state stored in Redux along with
the resource templates cache, the Sinopia editor builds a RDF
graph upon demand. When cataloging, the user at anytime can
see what RDF is being produced by clicking on the Preview RDF
button:

Quick sinopia:hasTemplate solution

In developing the Sinopia version 1.0, we �rst worked on
representing resource templates using React components
followed by using Redux. After we had working codebase, we
started generating RDF using the N3 RDF javascript module
based on the application's Redux state. Using a OpenAPI yaml
API con�guration de�nition of the expected interactions with the
Trellis backend, we successfully created the expected entity with
a newly resolvable minted URI.

Future Possibility: Machine Learning

We have tentatively started exploring the use of Machine
Learning for part of these work�ows, especially in trying to map
incoming RDF with the existing resource templates in the
Sinopia.

Questions?

Thank-you!

©2019 Jeremy Nelson under the CC4 license. Github source.

https://redux.js.org/
https://sinopia.io/
https://reactjs.org/
https://redux.js.org/
https://github.com/rdfjs/N3.js/
https://redux.js.org/
https://www.openapis.org/
https://www.trellisldp.org/
https://sinopia.io/
https://github.com/LD4P/bf-workshop-2019/issues/new?title=Linked+Data+Editor+RDF
http://creativecommons.org/licenses/by/4.0/
https://github.com/LD4P/bf-workshop-2019

